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Abstract

The scattering of elastic waves by a side-drilled hole (sdh) i.e. a circular cylindrical cavity, is considered. The scat-

tering of plane or cylindrical waves by an sdh is an old subject; here the T matrix solution is adopted. The elastic waves

are excited by an ultrasonic probe and a model of such a probe is thus used. The waves from the probes are expressed as

a Fourier transform, i.e. as a superposition of plane waves. These plane waves are then transformed to the cylindrical

system centred at the sdh. To obtain the signal in a receiving ultrasonic probe an electromechanical reciprocity relation

is used. The signal response is obtained as a double wavenumber integral and an azimuthal summation. In the far field

the integrals can be calculated approximately by the stationary phase approximation. Some numerical examples are

given, in particular concentrating on when this approximation is valid.
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1. Introduction

Ultrasonic nondestructive testing for defects is a common testing procedure in some applications, e.g. in

aerospace, process, and nuclear power industries. To get a deeper understanding of the testing a mathe-

matical modelling is very valuable and therefore many more or less sophisticated models have been de-

veloped through the years. A good model can be used for parametric studies much more easily than

experimental work, and is therefore well suited for development of testing procedures and qualification of
procedures and personnel.

In ultrasonic NDT calibration is performed by a side-drilled hole (sdh for short), a flat-bottomed hole or

a notch. The sdh is probably the most well-defined and reproducible reflector and is therefore very well

suited for this purpose. The scattering by an sdh is treated in the literature in a number of ways.

Krautkr€aamer and Krautkr€aamer (1990) use simple high-frequency arguments to investigate the scattering

dependence on frequency and sdh radius. Chapman (1990) uses the Kirchhoff approximation in conjunc-

tion with a simple model of an ultrasonic probe to determine the scattering by an sdh and employs this for
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calibration, see also Schmerr (1998). The Kirchhoff approximation is a high frequency method, but in this

context it works well for ultrasonic wavelengths that are less than the sdh diameter. Purely numerical

methods, like FEM (Harumi and Uchida, 1990) and EFIT (Fellinger et al., 1995; Halkjaer, 2000) are also in

use, but are most useful in 2D as the number of unknowns often becomes too large in 3D.
As the sdh is a coordinate surface in cylindrical coordinates, the scattering problem can be solved an-

alytically in terms of Bessel and Hankel functions. In 2D this solution was given long ago by White (1958),

but only for plane wave incidence, see also Pao and Mow (1973) and Varadan et al. (1991). However, there

seem to be no attempts to use the analytical solution in combination with realistic models of ultrasonic

probes in transmission and reception. This is therefore the purpose of the present paper.

To model ultrasonic probes the approach of Bostr€oom and Wirdelius (1995) and B€oovik and Bostr€oom

(1997) is employed. This model replaces a transmitting probe by an effective traction boundary condition

on the surface of the component where the probe is situated. A receiving probe is modelled with the help of
a reciprocity result of Auld (1979). For the scattering by the sdh the null field solution as given by Olsson

(1994) as part of a scattering problem in a pipe is employed. This solution is equivalent with the separation

of variables solution, but it is convenient to employ the transition (T ) matrix that results from the null field

approach as this fully characterizes the sdh scattering for arbitrary incident fields.

2. The scattering problem

Consider the scattering by an sdh in an elastic half-space. The axis of the sdh is parallel with the surface

of the half-space and is located at the depth dz from this surface. The radius of the sdh is a. On the surface of

the half-space two ultrasonic probes are located, one is acting as transmitter and the other as receiver. As a

special case the transmitter may also act as a receiver.

Each probe has an attached coordinate system xtytzt for the transmitter and xryrzr for the receiver. The zt
and zr axes are normal to the surface of the half-space, the xt and xr axes are normal to the sdh axis, and the
yt and yr axes are parallel to the sdh axis. The xyz coordinate system is attached to the sdh with the origin in

the xtzt plane, the z axis as the sdh axis, the x axis parallel with the xt and xr axes, and the y axis antiparallel

with the zt and zr axes. In the probe coordinate systems the vectors from the probes to the sdh are

dt ¼ ðdtx; 0;�dzÞ ð1Þ

dr ¼ ðdrx; dy ;�dzÞ ð2Þ

where dy is the displacement between the probes in the axial direction of the sdh. In practice one usually

takes dy ¼ 0.

The material of the half-space is assumed to be homogeneous, isotropic and linearly elastic with Lam�ee
constants k and l and density q. Only time harmonic conditions with the time factor expð�ixtÞ is con-

sidered. The longitudinal and transverse wavenumbers are kp ¼ xðq=ðk þ 2lÞÞ1=2
and ks ¼ xðq=lÞ1=2

, res-

pectively. The equation of motion for the displacement field is thus

k�2
p rðr � uÞ � k�2

s r� ðr � uÞ þ u ¼ 0 ð3Þ

which is written in a way which clearly indicates the decoupling into longitudinal and transverse waves.

The boundary condition on the sdh is that the surface traction vanishes there:

tðr̂rÞ ¼ r̂r � r ¼ r̂rkr � uþ 2l
ou

or
þ lr̂r � ðr � uÞ ¼ 0 ð4Þ

where r̂r is the radial unit vector in the xy plane, r the corresponding radial coordinate and r is the stress
tensor.
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On the planar surface of the half-space the traction vector

tðẑztÞ ¼ ẑzt � r ¼ ẑztkr � uþ 2l
ou

ozt
þ lẑzt � ðr � uÞ ð5Þ

where ẑzt ¼ ẑzr is the unit normal to the half-space, also vanishes except for the action of the probes. The

transmitting probe is modelled by specifying the traction beneath the probe and the receiving probe is
modelled by a reciprocity argument, see further in Sections 4 and 5, respectively.

The formulation of the scattering problem is completed by radiation conditions which in essence say that

all energy is outward propagating far away from the probes. It is noted that a precise mathematical

statement of the radiation conditions is not so easy in the present case which admits guided waves

both along the free surface of the half-space (circular Rayleigh surface waves) and along the sdh. The

surface waves along the sdh are also influenced by the presence of the planar free surface, this coupling

being of significance only if the distance between the sdh and the planar surface is smaller than a few

wavelengths.
To simplify the treatment all multiple scattering between the sdh and the surface of the half-space

is neglected. This is justified if the distance dz between the sdh and the surface of the half-space is a couple

of wavelengths, particularly if it is noted that ultrasonic testing in practice is performed in the time do-

main where possible multiple scattering arrives later in time than the first stronger directly reflected

wave.

3. The scattering by the sdh

To treat the scattering by the sdh it is clearly convenient to employ cylindrical coordinates ruz centred in

the sdh, i.e. having the same origin as the xyz coordinate system. The scattering problem can then be solved

by separation of variables in a straightforward way. However, here the null-field approach solution as given

by Olsson (1994) is used as this is already available and is in a convenient format for the present purposes. It

is noted that for the scattering by the sdh the null field approach yields the same exact solution as obtained

by separation of variables.
To describe the scattering it is convenient to introduce the following set of cylindrical vector wave

functions:

v0
1rmðh; rÞ ¼

ffiffiffiffiffiffi
em
8p

r
1

qs
r� ẑzJmðqsrÞ

cosmu

sinmu

 !
eihz

" #

v0
2rmðh; rÞ ¼

ffiffiffiffiffiffi
em
8p

r
i

ksqs
r�r� ẑzJmðqsrÞ

cosmu

sinmu

 !
eihz

" #

v0
3rmðh; rÞ ¼

ffiffiffiffiffiffi
em
8p

r
1

ks
r JmðqprÞ

cosmu

sinmu

 !
eihz

" #
ð6Þ

Here Jm is a Bessel function and the Neumann factor is e0 ¼ 1, em ¼ 2, m ¼ 1; 2; . . . The axial wavenumber is

h and the radial wavenumbers are qs ¼ ðk2
s � h2Þ1=2

and qp ¼ ðk2
p � h2Þ1=2

, both with the branches defined so

that Imqs P 0 and Imqp P 0. Real azimuthal functions are chosen and the index r ¼ e, o (even, odd) de-

termines the azimuthal parity. The first index s (¼ 1, 2, 3) on the wave functions is the mode index with
s ¼ 1 for SH waves, s ¼ 2 for SV waves and s ¼ 3 for P waves. The normalizations are such that the wave
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functions are dimensionless and give a simple Green tensor expansion. The superindex 0 on the wave-

functions indicates that they are regular for r ¼ 0. The functions vþ, which are defined with a Han-

kel function of the first kind instead of the Bessel function, give outward propagating waves and are also

needed in the following. The functions ~vv0 and ~vvþ are defined with all explicit ‘‘i’’ in Eq. (6) changed to ‘‘)i’’.
The incoming field from the transmitting probe which is scattered by the sdh is treated in detail in the

next section. At present it is enough to realize that the incoming field is regular in the vicinity of the sdh and

thus admits a representation in terms of regular cylindrical waves:

uinðrÞ ¼
X
s;r;m

Z 1

�1

dh
ks

asrmðhÞv0
srmðh; rÞ ð7Þ

Here the summations are over s ¼ 1, 2, 3, r ¼ e, o, and m ¼ 0; 1; 2; . . . The expansion in Eq. (7) is valid in a
cylinder circumscribing the sdh which just reaches the closest point of the transmitting probe.

The field scattered by the sdh also admits a representation in cylindrical waves, but this time the ex-

pansion is in terms of the outgoing waves:

uscðrÞ ¼
X
s;r;m

Z 1

�1

dh
ks

fsrmðhÞvþ
srmðh; rÞ ð8Þ

The unknown expansion coefficients fsrmðhÞ can here be determined in terms of the known asrmðhÞ simply by

using the traction free boundary condition on the sdh surface. As mentioned above, however, the null field
solution by Olsson (1994) is employed. This solution yields the transition (T ) matrix of the sdh, which is the

matrix relating the expansion coefficients of the incoming field to those of the scattered field:

fsrmðhÞ ¼
X

s0
Tm

srs0r0 ðhÞas0r0mðhÞ ð9Þ

As the sdh is a coordinate surface in the cylindrical coordinate system there is of course no coupling be-
tween different axial wavenumbers h and azimuthal orders m. The scattering by the sdh gives mode con-

version so there is a coupling between different s values. As opposed to the scattering by a sphere there is

also mode coupling between the SH waves and the P and SV waves (except for h ¼ 0 or m ¼ 0). There is of

course no coupling between different azimuthal parities, but a different r0 is still indicated in Eq. (9) because

the sr indices decouple into the two groups sr ¼ 1o, 2e, 3e (even parity) and sr ¼ 1e, 2o, 3o (odd parity).

The T matrices of the two groups are equal except that there is a sign change in the elements ss0 ¼ 12, 21,

13, 31 between the two groups.

All in all the T matrix can thus be viewed as a sum of two three by three matrices that only differ in some
signs. Olsson (1994) gives explicit expressions for computing the T matrix. It is noted that the T matrix

referred to the cylindrical waves as defined here is both symmetric and ‘‘hermitian’’ which can both be used

as valuable checks on the computations.

4. The incoming field

To make a detailed modelling of a transmitting ultrasonic probe is a complicated matter. Here the

common approach of modelling the probe by specifying the traction beneath it is used. The resulting

boundary value problem with a specified traction on the surface of an elastic half-space can straightfor-

wardly be solved by a double spatial Fourier transform. More details, such as the types of specified
tractions that are possible, may be found in Bostr€oom and Wirdelius (1995).
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Introduce the plane vector wave functions

/1ða; b; rÞ ¼
1

4pks sin a
r� ðẑzeiks ĉc�rÞ ¼ � i

4p
b̂beiks ĉc�r

/2ða; b; rÞ ¼
1

4pk2
s sin a

r�r� ðẑzeiks ĉc�rÞ ¼ � 1

4p
âaeiks ĉc�r

/3ða; b; rÞ ¼
kp
ks

	 
3=2
1

4pkp
rðeikp ĉc�rÞ ¼ kp

ks

	 
3=2
i

4p
ĉceikp ĉc�r

ð10Þ

Here the spherical unit vectors are

ĉc ¼ ðsin a cos b; sin a sin b; cos aÞ
âa ¼ ðcos a cos b; cos a sin b;� sin aÞ
b̂b ¼ ð� sin b; cos b; 0Þ

ð11Þ

and a and b are the spherical angles of the direction of propagation of the plane wave. It is noted that a
becomes complex for evanescent waves. The normalizations are such that the wave functions are dimen-

sionless and give a simple Green tensor expansion. When discussing the transformation properties it is most

natural to employ the variables a and b but from a computational point of view it is more convenient to

employ the Fourier transform variables

q ¼ kj sin a cos b

p ¼ kj sin a sin b
ð12Þ

with kj ¼ ks or kp as appropriate.

The field radiated by the transmitting probe can now be written

uin ¼
X
j

Z 1

�1

Z 1

�1

dqdp
kjhj

njðq; pÞ/jða; b; rtÞ ð13Þ

where hj ¼ ðk2
j � s2Þ1=2

with Imhj P 0, s ¼ ðq2 þ p2Þ1=2
and the summation is over j ¼ 1, 2, 3. Expressions

for the expansion coefficients nj for various types of probes are given by Bostr€oom and Wirdelius (1995). As

a simple example, for a specified traction that is constant (except for the phase) and only has a normal

component:

n1ðq; pÞ ¼ 0

n2ðq; pÞ ¼ A
2iksshshp

R
Tz

n3ðq; pÞ ¼ �A
ffiffiffiffiffiffiffiffi
kpks

p hpðk2
s � 2s2Þ
R

Tz

ð14Þ

where A is an amplitude factor. The Rayleigh function is

R ¼ 4s2hshp þ ðk2
s � 2s2Þ2 ð15Þ

and the double Fourier transform of the specified normal traction is

Tz ¼
4k2

s

pQp
sinQb sin pc ð16Þ

Here

Q ¼ qþ ki sin c ð17Þ
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where c is the angle of the probe and ki ¼ ks or kp depending on the probe being of S or P type, respectively.

The probe is assumed to be rectangular with sides b and c in the xt and yt directions, respectively, and the

beam axis is assumed to lie in the xtzt plane.

From a computational point of view it is natural to employ the Fourier variables q and p. When the
expansion of the incoming field is going to be transformed to the cylindrical coordinates of the sdh, it is,

however, more convenient to employ the angular variables a and b. Neglecting the evanescent waves the

expansion Eq. (13) becomes

uin ¼
X
j

Z p

p=2

sin ada
Z 2p

0

dbnjðq; pÞ/jða; b; rtÞ ð18Þ

where the relations between q and p and a and b are given in Eq. (12).

The transformation of Eq. (18) into an expansion in terms of the regular cylindrical waves of the sdh is

performed in three steps. A translation followed by a rotation gives an expansion in plane waves in the xyz
system and finally the plane waves are transformed to the cylindrical waves. Translation (which is trivial)

and rotation with )90� around the x axis gives

uin ¼
X
jj0

Z p

0

sin a0 da0
Z p

0

db0njðq; pÞeikj ĉc�dtRjj0/j0 ða0; b0; rÞ ð19Þ

where the plane waves now are with respect to the xyz system. The relations between the spherical angles

are

sin a cos b ¼ sin a0 cos b0

sin a sin b ¼ cos a0

cos a ¼ � sin a0 sin b0
ð20Þ

and the elements of the rotation matrix are

R11 ¼ R22 ¼ sin b sin b0

R12 ¼ R21 ¼ �i
cos b0

sin a
R33 ¼ 1

R13 ¼ R31 ¼ R23 ¼ R32 ¼ 0

ð21Þ

This form of the rotation matrix means that the SH and SV waves (j ¼ 1, 2) are mixed by the rotation

whereas the P wave (j ¼ 3) is left unaffected.

The final step is the transformation to the cylindrical waves which is performed by the following

/sða0; b0; rÞ ¼ ks

ks

X
r;m

Dy
srmðb

0Þv0
srmðks cos a0; rÞ ð22Þ

where

Dy
srmðb

0Þ ¼ im�ds2

ffiffiffiffiffiffiffiffiffi
emks
2pks

r
cosmb0

sinmb0

	 

ð23Þ

and the summation is over r ¼ e, o and m ¼ 0; 1; 2; . . . Insertion of Eq. (22) into Eq. (19) and changing the

integration variable from a0 to

h ¼ ks cos a0 ð24Þ
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then yields an expansion of the incoming field as in Eq. (7) with the expansion coefficients

asrmðhÞ ¼
X
j

Z p

0

db0njðq; pÞeikj ĉc�dtRjsDy
srmðb

0Þ ð25Þ

The transformations of variables that are needed in this equation are given in Eqs. (12), (20), and (24). As

the evanescent waves have been neglected, Eq. (25) is only valid for propagating waves, i.e. for jhj6 ks. For

jhj > ks, asrmðhÞ ¼ 0.

5. The received signal response

So far the action of the transmitting probe and the scattering of the resulting field by the sdh have been

treated. It now remains to determine the electrical signal of the receiving probe, this being the quantity that

is measured in practice. To this end the electromechanical reciprocity result of Auld (1979) is ideal to use.

Auld�s result relates two different time harmonic elastodynamic states 1 and 2 generated by two different
probes t and r (which as a special case may be the same). State 1 with displacement field u1 is due to an

incident electric power P to probe t in the presence of the defect (the sdh in this case) and state 2 with

displacement field u2 is due to incident electric power P to probe r in the absence of the defect. With these

conditions Auld�s result is

dC ¼ � ix
4P

Z
S
ðu2 � t1 � u1 � t2ÞdS ð26Þ

where dC is the change in the electric reflection coefficient of probe r due to the presence of the defect, i.e.

more or less the quantity measured in practice. The surface S is any control surface enclosing the defect and

t1 and t2 are the surface tractions of state 1 and 2, respectively.

Now let state 1 be the actual situation of interest with the sdh and probe t acting as transmitter. The

auxiliary state 2 has probe r as transmitter. The surface S can be the surface of the sdh although this is not

necessary. In the vicinity of the sdh state 1 can be expanded as

u1 ¼
X
s;r;m

Z 1

�1

dh
ks

aðtÞsrmðhÞv0
srmðh; rÞ

�
þ f ðtÞ

srmðhÞvþ
srmðh; rÞ



ð27Þ

which is just the sum of Eqs. (7) and (8) with a superscript t added to indicate the transmitting probe. State

2 can likewise be expanded as

u2 ¼
X
s;r;m

Z 1

�1

dh
ks

~aaðrÞsrmðhÞ~vv0
srmðh; rÞ ð28Þ

For a reason soon apparent the expansion is here performed with the wave functions with a tilde. Re-

member that this tilde means that all explicit ‘‘i’’ in the definition is changed to ‘‘)i’’. Equivalently this can

be performed by changing ‘‘h’’ to ‘‘�h’’ and changing sign on the s ¼ 2 wave function. This means that ~aaðrÞ

can be determined from aðrÞ in the same manner.

When the expansions Eqs. (27) and (28) are inserted into Eq. (26) the resulting integrals over S can be

computed using the Betti identities for cylindrical waves (which can be derived in the same manner as the

spherical counterparts, see Pao (1979)):Z
S

~vv0
s0r0m0 ðh0; rÞ � tðvþ

srmðh; rÞÞ
h

� tð~vv0
s0r0m0 ðh0; rÞÞ � vþ

srmðh; rÞ
i
dS ¼ ildss0drr0dmm0dðh� h0Þ ð29Þ

Z
S

~vv0
s0r0m0 ðh0; rÞ � tðv0

srmðh; rÞÞ
h

� tð~vv0
s0r0m0 ðh0; rÞÞ � v0

srmðh; rÞ
i
dS ¼ 0 ð30Þ
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Here t denotes the surface traction operator, i.e. when S coincides with the surface of the sdh it is the

operator defined through Eq. (4). The result for the signal response finally becomes

dC ¼ lcs
4P

X
s;r;m

Z ks

�ks

dh
ks

f ðtÞ
srmðhÞ~aaðrÞsrmðhÞ ð31Þ

Using also Eq. (9) this can be rewritten as

dC ¼ lcs
4P

X
r;m

X
s;s0

Z kss0

�kss0

dh
ks

~aaðrÞsrmðhÞTm
srs0r0 ðhÞa

ðtÞ
s0r0mðhÞ ð32Þ

Here the integration limit is kss0 ¼ minðks; ks0 Þ and the way to choose r0 was explained below Eq. (9). In Eq.

(32) the effects of the transmitting probe (given by aðtÞ), the sdh (given by T ) and the receiving probe (given

by ~aaðrÞ) are clearly separated in a very nice fashion, cf. Bostr€oom and Wirdelius (1995) for the corresponding

result for spherical waves.

6. Far field approximations

As the signal response as derived in Eq. (32) contains a double integral (note that the expansion coef-

ficient of the incoming field in Eq. (25) contains an integral) it is computationally rather demanding if time

domain results which also include a frequency integration are asked for. Therefore, it is of interest to in-

vestigate approximate calculations of the integrals. This also has the advantage of leading to results that are
more easy to interpret.

The most obvious way of approximating the integrals is by using the stationary phase approximation

with the distance between the probe and the sdh as the large parameter. The approximation is performed in

two steps: first the b0 integral in the expansion coefficients of the incoming field in Eq. (25) is calculated and

then the h integral in the signal response in Eq. (32). The exponent in the integrand in Eq. (25) can be

written

kjĉc � dt ¼ kjdt sin a sinðb0 � utÞ ð33Þ

where dt ¼ ðd2
tx þ d2

z Þ
1=2

is the distance between the transmitter and the sdh and ut is the angle between dt
and the negative zt exist. The large parameter in the stationary phase approximation is kjdt sin a and the

only stationary point appears at b0 ¼ ut þ p=2 (note that 06 b0
6p and �p=2 < ut < p=2). With this it is

easy to obtain the approximation

asrmðhÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

ksdt sin a

s
eiðksdt sin a�p=4Þ

X
j

njðq; pÞRjsDy
srmðb

0Þ
b0¼utþp=2

��� ð34Þ

where the effects of fixing b0 on the other parameters are determined by Eqs. (12) and (20).

For the h integral in Eq. (32) the phase function comes from the exponent in Eq. (34) from the trans-

mitting probe and a similar contribution from the receiving probe

wðhÞ ¼ dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

s � h2

q
þ dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

s0 � h2

q
� dyh ð35Þ

where dr ¼ ðd2
rx þ d2

z Þ
1=2

. The last term appears because the receiving probe is located at y ¼ dy and not at

y ¼ 0 as the transmitting one. The minus sign is due to the tilde on aðrÞ in Eq. (32) as explained earlier. When

dy ¼ 0 the stationary point of w is at h ¼ 0 and when ks ¼ ks0 it is at h ¼ ksdy=ððdr þ dtÞ2 þ d2
y Þ

1=2
. When

dy 6¼ 0 and ks 6¼ ks0 no simple analytical solution for the stationary point can be obtained but it can of
course be obtained numerically in a straightforward way.

3500 A. Bostr€oom, P. B€oovik / International Journal of Solids and Structures 40 (2003) 3493–3505



The stationary phase approximation of Eq. (32) then becomes

dC ¼ lcs
4P

X
s;s0

2p

ks
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dtdr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2

s � h2Þðk2
s0 � h2Þ

pq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p

jw00ðhÞj

s
eiðwðhÞ�3p=4Þ

�
X
r;m

T m
srs0r0

X
j

nðtÞ
j ðqt; hÞRjsDy

srmðb
0
tÞ

" #
b0t¼�

ffiffiffiffiffiffiffiffiffi
k2
s�h2

p
sin ut

� ð

2
4 � 1Þds02

X
j0

nðrÞ
j0 ðqr;� hÞRj0s0D

y
s0r0mðb

0
rÞ

3
5

b0r¼�
ffiffiffiffiffiffiffiffiffi
k2
s0
�h2

p
sin ur

ð36Þ

where the stationary value for h should be inserted and indices t and r have been inserted to distinguish

quantities referring to the transmitting and receiving probe, respectively.

As it stands Eq. (36) is a little formal and not very illuminating, although it is straightforward to

compute numerically.

To gain a better understanding two special cases are now considered. First assume that the two probes
are both primarily emitting P waves. Neglecting all S waves (i.e. put n1 ¼ n2 ¼ 0) gives in a straightforward

way the more explicit expression

dCPP ¼ lcs
4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

k3
pdtdrd

s
eiðkpd�3p=4ÞnðtÞ

3 ðqt; hÞnðrÞ
3 ðqr;�hÞ

X
m

emð�1ÞmT m
33ðhÞ cosmðut � urÞ ð37Þ

where d ¼ ððdt þ drÞ2 þ d2
y Þ

1=2
is the distance between transmitter and receiver along the ray reflected at the

sdh axis and the stationary values h ¼ kpdy=d and qi ¼ �ðk2
p � h2Þ1=2

sin ui, i ¼ t; r, should be inserted. The r
indices on Tm

33 have been suppressed as Tm
3e3e ¼ Tm

3o3o ¼ T m
33. The phase dependence on distance through the

factor kpd in the exponential is the one expected from ray physics. When dt is of the same order as dr
the amplitude dependence on distance is d�3=2 which is expected as the transmitter gives a factor d�1 and the

sdh scattering a factor d�1=2 (as this scattering is in essence two dimensional).

As a second example consider an S probe acting in pulse-echo, i.e. the transmitter also acts as receiver.

Then assume n3 ¼ 0. The stationary point is at h ¼ 0 and the stationary value b0 ¼ u þ p=2 easily translates

into q ¼ �ks sin ut and p ¼ 0. The rotation matrix elements become R11 ¼ R22 ¼ 0 and R12 ¼ R21 ¼ i which

finally gives

dCss ¼
lcs
4p

eið2ksdtþp=4Þ

ðksdtÞ3=2

ffiffiffi
p

p X
m

emð�1Þm ðn2ð
h

� ks sin ut; 0ÞÞ
2Tm

11ð0Þ þ ðn1ð � ks sin ut; 0ÞÞ
2T m

22ð0Þ
i

ð38Þ

Note that there is no coupling between the SV and SH waves (no term n1n2Tm
12). This easily follows from

symmetry considerations. Depending on the probe being of SV or SH type only one of the terms in Eq. (38)

is usually of importance. An example where both terms are important is for a rotated SV probe, for which
the beam axis is not in the xtzt plane and n1 and n2 are of about equal size.

It is here worthwhile to a little closer examine when the stationary phase approximation leading to Eqs.

(36)–(38) is expected to be valid. First the parameter in the exponent (essentially kjd) should be large. Thus

the distance between the probe and the sdh should be a couple of wavelengths, a condition usually met in

practice. Next the rest of the integrands should be slowly varying functions of b0 and h. This in particular

means that the factors sinQb and sin pc in Eq. (16) (which is only valid for a rectangular piston-like probe; a

similar behaviour appears for other probes) must vary slowly which is only true if the probe near-field

length R ¼ D2=4kj (with D the probe diameter and kj the ultrasonic wavelength) is much smaller than the
distance dt between the probe and the sdh. This condition is often not satisfied in practice. Also the T matrix

A. Bostr€oom, P. B€oovik / International Journal of Solids and Structures 40 (2003) 3493–3505 3501



TmðhÞ must be slowly varying as a function of h. This is not expected to be a trouble in practice. Note that

the stationary phase approximation only approximates the axial scattering by the sdh and not the azi-

muthal scattering.

A way to avoid the restriction that the sdh should lie well outside the near-field length of the probe is to
subdivide the probe into a number of elements. A natural strategy is to subdivide the probe into rectan-

gular, almost quadratic, elements so that the near-field length of each element is much smaller than the

distance between transmitter and sdh. The subdivision also has the merit that every element can be con-

trolled separately, thus enabling the modelling of phased arrays and focused probes. For elliptic or irregular

shaped probes the rectangular elements do not match the boundary very well, but this is of minor im-

portance because the exact amplitude distribution across the probe is not crucial and is anyway not known

in detail in practice. A drawback with subdividing the probe is that the stationary phase approximations

contain an additional double sum over the elements of the transmitting and receiving probes, thus very
quickly increasing the computational effort with the number of elements.

7. Numerical results

Turning to numerical examples, the difference between the direct integration in Eq. (32) and the sta-

tionary phase approximation in Eq. (36) (or Eq. (37) or (38) in special cases) will be illustrated. Only results

with a fixed frequency are considered as this gives a well-defined wavelength and probe near-field length,

two quantities that are important when the validity of the stationary phase approximation is investigated.

The material of the component with the sdh is assumed to be steel with wave speeds cp ¼ 5940 m/s and

cs ¼ 3230 m/s.

The computations are rather straightforward, but a few comments may be in order. The signal response

for both the direct integration and the stationary phase approximation contains an azimuthal sum over m.
To get convergence it is enough to take terms up to approximately mmax ¼ ½ksa� þ 10 (½�� denotes the integer

part). The integration over the axial wavenumbers in the signal response in Eq. (32) has been performed

with 100 points in a Gauss–Legendre quadrature. This gives good accuracy for the present computations,

but the number of points is somewhat dependent on the distance between the probe and sdh, increasing

with distance due to the more oscillatory behaviour of the integrand.

In Table 1 the exact and approximate signal responses from an sdh with 2 mm radius at various depths

are compared. The probe is a 0� P probe with frequency 2 MHz and side 1 mm (and the probe model used is

such that all S waves are completely suppressed). This probe is unrealistically small but is chosen here
because its near-field length is less than 1 mm and the only condition of importance for the validity of the

stationary phase approximation is that the wavelength, which is almost 3 mm, should be smaller than

the depth of the sdh. The results are calibrated against the exact result at depth d ¼ 40 mm. As seen from

the table the stationary phase approximation performs well, even at depth d ¼ 10 mm (about three

Table 1

Exact and approximate signal responses for various depths of an sdh with radius 2 mm

d (mm) Exact signal (dB) Appr. signal (dB)

5 26.6 30.5

10 19.4 17.7

20 9.5 8.7

40 0.0 )0.4

0� P probe with side 1 mm, frequency 2 MHz and near field length less than 1 mm.
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wavelengths) the discrepancy is only 1.7 dB. At depth d ¼ 5 mm (one wavelength between the probe and

the top of the sdh) the difference is 3.9 dB which is of course too much to be useful.

In Table 2 the situation is the same except that the probe size is changed to 20 mm, which is a typical size

used in practice. The results are calibrated against the exact result at depth d ¼ 130 mm. The near field
length of this probe is 34 mm and as seen from the table the results for smaller depths than this are very far

off. To get a really good result within 1 dB the depth has to be at least 130 mm, i.e. almost four near field

lengths.

As stated in the previous section the validity of the stationary phase approximation requires that the

distance between the probe and the sdh is much larger than the ultrasonic wavelength and the probe near-

field length. The results from Tables 1 and 2 now make it possible to quantify this a little closer. For an

accuracy of 1 dB the distance between the probe and sdh should be at least five times both the wavelength

and the near-field length. Although no further results are given here, this statement is in fact more or less
generally valid also for other probe sizes, types, and distances. It is in particular noted that the validity of

the stationary phase approximation is more or less independent of the sdh radius (because the approxi-

mation only involves the axial scattering whereas the azimuthal sum is unaffected).

Another aspect of the scattering by an sdh is considered in Table 3 which shows the behaviour when the

sdh radius is varied. The depth of the sdh is 50 mm and the probe has side 10 mm and frequency 1 MHz.

The probe is thus operating in the far field and the results are obtained with the stationary phase ap-

proximation (but an exact integration would only differ very little). The left column shows results for a 0� P

probe and the right column for a 45� SV probe. According to some simple arguments (Krautkr€aamer and
Krautkr€aamer, 1990) the scattering by an sdh should increase with the square root of the radius. A doubling

of the radius should thus lead to an increase in the received signal by 20 log
ffiffiffi
2

p
¼ 3:01 dB. For the P probe

in Table 3 this is seen to be very well satisfied for radii above 2 mm. That the simple rule breaks down for

smaller radii is not surprising as the arguments behind the rule are of a high frequency nature which are

Table 2

Exact and approximate signal response for various depths of an sdh with radius 2 mm

d (mm) Exact signal (dB) Appr. signal (dB)

10 4.9 34.3

30 4.7 20.0

50 7.0 13.3

70 5.7 8.9

90 3.7 5.7

110 1.8 3.1

130 0.0 0.9

0� P probe with side 20 mm, frequency 2 MHz and near field length 34 mm.

Table 3

Signal response for an sdh of various radii and depth 50 mm

d (mm) Signal P (dB) Signal SV (dB)

0.25 )21.5 )15.8

0.5 )9.5 )4.6

1 0.0 0.0

2 2.2 1.1

4 5.2 3.2

8 8.3 6.6

16 11.4 11.6

Probe with side 10 mm and frequency 1 MHz and 0� probe in left column and 45� SVprobe in right column.
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definitely invalid for holes with diameter less than a wavelength. As seen from Table 3 the angled SV probe

do not follow the rule very well, but why this is so is unclear.

As a last example Fig. 1 shows the signal response as a function of time. The sdh has a diameter of 10

mm and its centre depth is 50 mm. The probe is a 0� SV probe with centre frequency 2 MHz and a 100%

Hanning window (meaning that the frequency content has a cos2 distribution with the peak at 2 MHz and

zeroes at 0 ad 4 MHz). 200 equidistant frequencies have been employed, but 100 points give an almost
identical result. The probe is square with side 2 mm. This is a smaller probe than used in real applications,

but it is chosen because it gives a strong ‘‘creeping wave’’ response. The signal around t ¼ 28 ls in Fig. 1 is

the directly reflected SV wave (the probe is chosen to only generate and detect SV waves; a real probe of this

size would also generate P waves and these can also be included in the model as explained in previous

sections). The second signal around t ¼ 36 ls is the creeping wave, its arrival time fits exactly with an SV

wave hitting the sdh tangentially, then travelling around the back half of the sdh as a Rayleigh-like surface

wave, and finally going back to the probe as an SV wave again. There is even a third, small signal at time

t ¼ 47 ls in Fig. 1 and this is the contribution from the creeping wave that has travelled one and a half way
around the sdh. For further details and references on creeping waves the review by Gaunaurd (1989) can be

consulted.

8. Concluding remarks

The scattering by an sdh has been considered by using the analytical solution. Realistic models of

transmitting and receiving ultrasonic robes are used and the reception is in particular modelled with a

reciprocity argument. To obtain simpler and more explicit and intuitive results the stationary phase

20 30 40 50

t (microseconds)

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Fig. 1. The signal response as a function of time for an sdh with diameter 10 mm and centre depth 50 mm. 0� SV probe with side 2 mm

and centre frequency 2 MHz.
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approximation is employed. However, it is noted that this approximation is often violated in practice and

this is demonstrated with some numerical computations.

In practical NDT the sdh is used as a calibration reflector. The present developments are of course

performed with this goal in mind and have in fact already been used for this purpose, see Bostr€oom and
Wirdelius (1995) and B€oovik and Bostr€oom (1997). These papers in fact report parts of a larger, still on-going,

development of a computer code (called UTDefect) for the modelling of ultrasonic NDT in thick-walled

components typical in the nuclear power industry, (Bostr€oom, 1995; Bostr€oom and Jansson, 1997, 2000). In

this context it should also be noted that these developments give a validation of the present work as the

scattering by a strip-like crack with the sdh as calibration has been favourably compared with experiments

(B€oovik and Bostr€oom, 1997; Bostr€oom, 1995: and Bostr€oom and Jansson, 2000).
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